Margaret Japp,¹ B.Sc.; Richard Gill,¹ Ph.D.; and M. David Osselton,¹ Ph.D.

Comparison of Drug Retention Indices Determined on Packed, Wide Bore Capillary and Narrow Bore Capillary Columns

REFERENCE: Japp, M., Gill, R., and Osselton, M. D., "Comparison of Drug Retention Indices Determined on Packed, Wide Bore Capillary and Narrow Bore Capillary Columns," *Journal of Forensic Sciences*, JFSCA, Vol. 32, No. 6, Nov. 1987, pp. 1574–1586.

ABSTRACT: The retention indices of 75 drugs and other compounds of toxicological significance have been measured on SE-30 equivalent, chemically bonded, fused silica capillary columns under isothermal conditions. The data have been assessed to determine the validity of using retention indices measured on packed columns for the identification of compounds eluting from narrow bore thin film or wide bore thick film capillary columns. The results indicate that the extensive retention index data bases published for SE-30 packed columns may be used for the preliminary identification of peaks eluting from capillary columns in toxicological screening. The study also indicates that retention index data bases generated on narrow bore capillary columns are applicable to wide bore thick film capillary columns.

KEYWORDS: toxicology, drug retention indices, chromatographic analysis

Gas chromatography (GC) is one of the most widely used techniques in analytical toxicology for the identification and quantification of compounds. The identification of an unknown compound is made by comparing its retention properties (retention index, RI) with those of reference samples recorded in a data base. Packed columns have generally been favored by toxicologists until recently, when a number of major technological advances have made capillary gas chromatography more robust and easier to use. The most important changes have involved the introduction of inert flexible fused silica columns (inside diameter [ID] $\simeq 0.2$ mm) and chemically bonded stationary phases to replace glass columns with nonbonded wall coated stationary phases [1]. These new columns retain high efficiencies, can be washed free of contaminants, and can be prepared with increased film thicknesses while their flexibility makes them easy to install in GC equipment. More recently, wide bore (0.53-mm ID) fused silica capillary tubing has been manufactured and used to prepare columns with chemically bonded thick films. These "wide bore" or "megabore" capillary columns are regarded as the "capillary replacement" for packed columns and provide an easy way to use fused silica column technology with packed column GC equipment.

Several data bases have been compiled for toxicological work giving retention indices on

Received for publication 16 Jan. 1987; revised manuscript received 2 April 1987; accepted for publication 6 April 1987.

¹Higher scientific officer, senior scientific officer, and principal scientific officer, respectively, Central Research Establishment, Home Office Forensic Science Service, Aldermaston, Reading, Berkshire, England.

SE-30 packed columns for drugs and poisons likely to be encountered in forensic science samples [2-7], that of Ardrey et al. [2] being the most extensive. The rapid changes in GC column technology have meant that laboratories have been unable to generate and update continually data collections on every type of capillary column. Consequently, a few studies have been carried out already to determine whether existing data bases on packed columns may be used with various types of capillary column.

Comparison of retention properties for drugs on nonbonded, SE-30 equivalent wall coated open tubular columns (WCOT) (ID $\simeq 0.2$ mm) with packed column data showed marked differences [8,9], and Schepers et al. [8] concluded that it was unwise to carry out analyses on these nonbonded capillary columns with the subsequent use of packed column data for identification. Differences were also found to occur between WCOT columns produced by different manufacturers [8,9]. The introduction of chemically bonded fused silica capillary columns again raised the question of the validity of transferring retention index data between columns. Perrigo et al. [10] compared retention data generated on narrow bore columns of this type with packed column data generated in their own laboratory and found the data to be highly correlated although some compounds showed marked deviations. Comparisons of narrow bore chemically bonded columns (SE-30) with nonbonded columns from the same manufacturer showed relatively good agreement but again some differences occurred [10,11]. Subsequently, data bases of retention indices for drugs and poisons using SE-30 chemically bonded narrow bore columns from various manufacturers have recently appeared in the literature [11-16].

The introduction of wide bore, chemically bonded fused silica columns with thick films and their potential use in analytical toxicology has indicated that the retention properties of these columns also need to be examined. Therefore, in this paper, an assessment is made on the validity of transferring isothermal retention indices between wide bore thick film capillary columns, narrow bore thin film capillary columns, and conventional packed columns all having the low polarity SE-30-type stationary phase. This phase has been shown to be the most suitable for toxicological analysis [3, 17] and has been used widely in U.K. forensic science laboratories. It is also the stationary phase recommended for international comparisons because of its extensive worldwide use [2].

Experimental Procedure

Materials

Pentane and *n*-butyl acetate were AnalaR grade from BDH (Poole, Great Britain). All drug samples were from the drug collection of the Central Research Establishment, Home Office Forensic Science Service. Straight chain alkane hydrocarbons were obtained from SGE (Milton Keynes, Great Britain) and Sigma (Poole, Dorset, Great Britain).

Gas Chromatography

Chromatography was performed using a Perkin Elmer Sigma 3B gas chromatograph interfaced to a Trivector Data Station (Trivector Scientific Ltd., Sandy, Great Britain) for data handling. A capillary injector operated in the split mode at a split ratio of 20:1 was used for the narrow bore (0.22-mm ID) columns, whereas for the wide bore columns (0.53-mm ID), a 1/4-in. (0.6-cm) packed column injection port fitted with a J & W inlet adaptor and glass liner for direct flash vaporization injection was employed (Jones Chromatography Limited, Glamorgan, Great Britain). The carrier gas was nitrogen operated at flow rates of 1 and 10 mL/min for narrow bore and wide bore columns, respectively. Flame ionization detection was used.

1576 JOURNAL OF FORENSIC SCIENCES

Solutions of straight chain hydrocarbons in pentane were prepared as references for the calculation of retention indices [18]. Isothermal RI values were measured at oven temperatures of 130°C for compounds with RI values up to 1600, 200°C for compounds with RI values between 1600 and 2200, and 275°C for compounds with RI values 2200 to 3300. Drugs, either as free acid or free base, were dissolved in *n*-butyl acetate at concentrations of 50 or 100 ng/ μ L (for narrow bore columns) and 50, 100, or 500 ng/ μ L (for wide bore columns). The higher concentrations were selected for late eluting compounds, for drugs having a poor detector response, and for some acidic compounds. Aliquots of 1 μ L were injected in the gas chromatograph using the hot needle technique [19, 20]. All retention index measurements were carried out in duplicate. The injector temperature was 280°C throughout, whereas detector temperatures were 180, 250, and 325°C, respectively, for the three oven temperatures.

Three types of fused silica nonpolar bonded phase capillary columns were used for RI measurements:

(1) BP1 narrow bore, 25-m by 0.22-mm ID with $0.25-\mu$ m film thickness (SGE, Milton Keynes, Great Britain),

(2) BP1 wide bore, 25-m by 0.53-mm ID with 1.0- μ m film thickness (SGE, Milton Keynes, Great Britain), and

(3) DB1 wide bore, 30-m by 0.53-mm ID with $1.5-\mu$ m film thickness (J & W Scientific, Jones Chromatography Limited, Glamorgan, Great Britain).

Results and Discussion

The isothermal retention indices of 75 drugs determined on the bonded phase fused silica capillary columns are presented in Table 1, arranged in ascending order of elution on the narrow bore column. The same data are listed alphabetically by compound name in Table 2. The packed column data also shown in the tables have been abstracted from the data base prepared by Ardrey et al. [2]. The compounds in this study were selected to cover a wide range of different chemical and pharmacological classes of drugs which are commonly encountered in toxicology casework. Included in the compounds selected were some for which reliable retention data were available on SE-30 packed columns (that is, RI values measured in 10 or more laboratories gave good agreement [4]). Others were deliberately chosen because RI values previously reported on SE-30 bonded [10, 12, 16] and nonbonded [8, 21] capillary columns did not correlate well with SE-30 packed column data or gave multiple peaks.

The correlation coefficients (r) for all pairs of columns examined are presented in Table 3 clearly demonstrating that all pairs are highly correlated. All data points available have been used to calculate the correlation coefficient for each pair of columns. When calculating the correlation coefficients, the retention index of the major peak was used for drugs giving multiple peaks in the chromatogram. Some of the results are illustrated graphically, showing the correlation between narrow bore capillary and SE-30 packed columns (r = 0.9966) in Fig. 1, wide bore capillary (SGE) and SE-30 packed columns (r = 0.9952) in Fig. 2, and narrow bore and wide bore (SGE) capillary columns (r = 0.9994) in Fig. 3. The wide bore columns obtained from two different manufacturers (SGE and J & W) were also highly correlated (r = 0.9967).

The interlaboratory standard deviation of retention index measurements is 15 to 20 RI units [3] so that a search window of \pm 50 to 60 RI units has often been used when comparing the RI of an unknown compound with those of reference samples recorded in a data base [2]. Using such a search window it has been shown that more than 99% of experimentally determined values fall within this range from the mean value [3].

In the present study, although the correlations obtained between RI data measured on capillary and packed columns are high (Table 3), several compounds gave RI values on capillary columns which differed by more than ± 50 units from those on packed columns and

		retention index."		
		Retention In	dex	
	Narrow Bore	Wide Bore	Wide Bore	
	0.22-mm ID	0.53-mm ID	0.53-mm ID	Packed
Compound	BP1 (SGE)	BP1 (SGE)	DB1 (J & W)	Column"
Limonene	1066	<i>b</i>		1053
Amphetamine	1119	1122		1123
Phentermine	1155	1174	•	1148
Methylamphetamine	1177	1174	1174	1176
Ethosuximide	1196	1210	1190	1209
Nicotinic acid	1196(1388)	1158(1296,1343,1436)	1340(1290)	1335
Chlormethiazole	1221	1228	1221	1230
Mephentermine	1247	1233	1249	1239
Acetylsalicylic acid	1254(1446,1507) ^e	1252(1443,1333,1364)	1270(1450,1508)	1309
Salicylic acid	1277"	1296"	1266	1308
Warfarin	1325°	• •	1326*	1432
Nicotine	1328	1327	•	1348
Phenelzine	1328	1329	• • •	1335
Salicylamide	1402	1422 ^e	1397	1455
Phenmetrazine	1416	1425	• • •	1431
Barbitone	1461	1478°	1458	1497
Cantharidin	1472	1457	1468	1492
Diethylpropion	1476	1489	• • •	1486
Tolazoline	1477°(1330,1198)	1474°	1465	1598,1490,1510
Paracetamol	1632	1643		1687
Butobarbitone	1642	1649	• • •	1665
Phenacetin	1660	1666	• •	1675
Mescaline	1674	1688	• • •	1688
Amylobarbitone	1695	1705	1694	1718
Pentobarbitone	1720	1732		1740
γ -Benzenehexachloride	1751	1756	•	1739
Pethidine	1756	1767		1751
Meprobamate	1758	1764		1796
Quinalbarbitone	1772	1777		1791
Caffeine	1797	1803		1810

TABLE 1-GC retention indices on nonpolar bonded phase capillary columns and SE-30 packed columns." in ascending order of

		Retention	Index	
	Narrow Bore	Wide Bore	Wide Bore	
	0.22-mm ID	0.53-mm ID	0.53-mm ID	Packed
Compound	BP1 (SGE)	BP1 (SGE)	DB1 (J & W)	Column"
Pheniramine	1810	1820		1804
Glutethimide	1837	1840	•	1836
Thiopentone	1850	1855	• •	1859
Diphenhydramine	1865	1872	• •	1873
Lignocaine	1875	1882		1870
Methylphenobarbitone	1883	1888	•	1891
Theophylline	1909	1923	1904	1999
Phenobarbitone	1932	1937	1931	1957
Cyclobarbitone	1947	1955	1947	1963
Atropine	1966(2171,2046°)	1976(2180,2058°)	2175(1973,2051)	2199,2048
Psilocin	1967	1929	•	1976
Psilocybin	1968	1838(1927)	•	2046
Methapyrilene	1981	1993	: : :	1981
Cyclizine	2020	2027	•	2020
Methaqualone	2125	2129	2125	2125
Propranolol	2133	2139"	2138 ^e	2157
Methadone	2139	2150*		2148
Cocaine	2177	2184	•	2187
Dextropropoxyphene	2180(1704,1619)	2186(1714)	2183(1623,1707)	2188,1687
Amitriptyline	2182	2188	2194	2196
Butriptyline	2185	2193	• • •	2181
Physostigmine	2196(1814)	2203(1829")	2198(1817)	2190,1804

TABLE 1--(Continued).

Primidone	2242	2266	2239	2247
Nortriptyline	2265	2287		2210
Pindolol	2273	2294	2268	2260
Imipramine	2279	2295	2262	2223
Pentazocine	2326(2352,2503)	2339	2330	2275
Phenytoin	2350	2365	:	2330
Phenylbutazone	2404	2413		2365
Codeine	2441	2460	:	2376
Dihydrocodeine	2446	2465	2442	2365
Diazepam	2475	2493	2464	2425
Morphine	2492	2506		2455
Chlorpromazine	2549	2565	2553	2486
Thebaine	2559(2544)	2558(2576)	2555	2517
Prazepam	2679	2694	÷	2641
Trifluoperazine	2714	2729		2683
Flurazepam	2799	2814		2785
Chlordiazepoxide	2809(2530)	2825(2543)		2799,2530,2453
Clonazepam	2832	2856	:	2885
Hydroxyzine	2889"	2906		2849
Ibogaine	2895(2969)	2908	2915	2871
Cholesterol	3093	3110	3100	3086
Strychnine	3125	3160	3140	3119
Buclizine	3285	3290	3295	3286
"Data from Ardrev et al. [2]				

⁴ For compounds giving multiple peaks, minor peaks are shown in parentheses.
⁶ Limonene gave multiple peaks, the peak well separated from the solvent is the one given.
^d... indicates no analysis was carried out.
^eSlight peak tailing.

[ABLE 2—GC retention indices on nonpolar bonded phase capillary columns and SE-30 packed column listed in alphabetical order. ^b

		Retentio	n Index	
	Natrow Bore	Wide Bore	Wide Bore	
	0.22-mm ID	0.53-mm ID	0.53-mm ID	Packed
Compound	BP1 (SGE)	BP1 (SGE)	DB1 (J & W)	Column"
Acetylsalicylic acid	1254(1446,1507)	1252(1443,1333,1364)	1270(1450,1508)	1309
Amitriptyline	2182	2188	2194	2196
Amphetamine	1119	1122		1123
Amylobarbitone	1695	1705	1694	1718
Atropine	1966(2171,2046)	1976(2180,2058)	2175(1973,2051)	2199,2048
Barbitone	1461	1478	1458	1497
γ -Benzenehexachloride	1751	1756		1739
Buclizine	3285	3290	3295	3286
Butobarbitone	1642	1649	:	1665
Butriptyline	2185	2193	:	2181
Caffeine	1797	1803		1810
Cantharidin	1472	1457	1468	1492
Chlordiazepoxide	2809(2530)	2825(2543)		2799,2530,2453
Chlormethiazole	1221	1228	1221	1230
Chlorpromazine	2549	2565	2553	2486
Cholesterol	3093	3110	3100	3086
Clonazepam	2832	2856	:	2885
Cocaine	2177	2184		2187
Codeine	2441	2460		2376
Cyclizine	2020	2027		2020
Cyclobarbitone	1947	1955	1947	1963
Dextropropoxyphene	2180(1704,1619)	2186(1714)	2183(1623,1707)	2188,1687
Diazepam	2475	2493	2464	2425
Diethylpropion	1476	1489		1486
Dihydrocodeine	2446	2465	2442	2365
Diphenhydramine	1865	1872		1873
Ethosuximide	1196	1210	1190	1209
Flurazepam	2799	2814	•	2785
Glutethimide	1837	1840		1836
Hydroxyzine	2889	2906		2849

1580 JOURNAL OF FORENSIC SCIENCES

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	e nine ine ne ttermine senste	2895(2969) 2279 1875 1066 1247	2908 2295 1882 1723	2915 2262 1249	2871 2223 1870 1053 1796
mine 172 172 174 1174 1174 1176 thitone 188 \dots 2455 \dots 2455 \dots 2455 1328 1327 1327 \dots 2455 \dots 2455 1361 1357 1327 \dots 2455 \dots 2455 196(1388) 1158(1296,1343,1436) \dots \dots 2455 \dots 2455 2205 2265 \dots \dots \dots \dots \dots \dots 1770 1643 \dots \dots \dots \dots \dots \dots \dots 1770 1770 1770 1770 \dots 1740 \dots 1740 1770 1760 \dots 1732 \dots 1740 1774 1774 1770 1732 1772 1174 \dots 1751 1751 1770 1174 \dots 1174 \dots 1740 175		1/38 1674 1939	1/04 1688 1993 2130	· · · · · · · · · · · · · · · · · · ·	1/90 1688 1981 1981
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mine rbitone	1177 1883 2492 1328	1174 1888 2506 1327	1174	1176 1891 2455 1348
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1196(1388) 2265 1632 2326(2352,2503)	1158(1296,1343,1436) 2287 1643 2339	1340(1290) 2330	1335 2210 1687 2275
1416 1425 1.1 1932 1937 1931 1932 1937 1931 1155 1174 1.1 2404 2413 1.1 2550 2365 1.1 2730 2365 1.1 2750 2365 2.365 2731 2365 2.365 2732 2365 2.365 2733 2365 2.366 2733 2203(1829) 2198(1817) 2130(1804 2703 2364 2.368 2366 2733 2203(1829) 2198(1817) 2130(1804 2703 2294 2.368 2260 2733 2294 2.368 2266 2679 2268 2.268 2247 2733 2139 2.138 2157 2133 2139 2.138 2157 2133 1929 2138 1967 1976 1976 1968 1838(1927) 1976 1407		1720 1756 1328 1328	1/32 1767 1666 1329 1820	:::::	1/40 1751 1675 1335 1804
2500 2303 829 2198 1817 2190,1804 2273 2273 2294 2190,1804 2266 2266 2266 2679 2694 2266 2641 2266 2267 2679 2694 2266 2267 2266 2247 2247 2133 2133 2139 2138 2138 2157 2157 2133 2133 2139 2138 2138 2157 2133 2139 2138 2138 2157 1967 1929 2138 2157 1968 1838(1927) 2046 1772 1777 1777 1791 1407 1701 1455 1455		1416 1932 1155 2404 250	1425 1937 1174 2413	1931 	1431 1957 1148 2365 2330
	دە	2530 2273 2679 2242 2133 1968 1772 1772	2203(1829) 2294 2294 2266 2139 11929 1177 1777	2198(1817) 2268 2239 2138 2138 2138 1397	2190,1804 2260 2247 2157 1976 1976 1791 1751

JAPP ET AL. • COMPARISON OF DRUG RETENTION INDICES 1581

		I	Retention Index	
	Narrow Bore	Wide Bore	Wide Bore	D
Compound	BP1 (SGE)	BP1 (SGE)	DB1 (J & W)	Columna
Strychnine	3125	3160	3140	3119
Thebaine	2559(2544)	2558(2576)	2555	2517
Theophylline	1909	1923	1904	1999
Thiopentone	1850	1855		1859
Tolazoline	1477(1330,1198)	1474	1465	1598,1490,1510
Trifluoperazine	2714	2729	:	2683
Warfarin	1325	:	1326	1432

TABLE 2—(Continued).

"Data from Ardrey et al. [2]. "For compounds giving multiple peaks, minor peaks are shown in parentheses." $c \dots$ indicates no analysis was carried out.

		Column	
Column	SGE, BP1 WB	J & W, DB1 WB	SE-30 Packed
SGE, BP1 NB	0.9994	0.9975	0.9966
SGE, BP1 WB		0.9967	0.9952
J & W, DB1 WB			0.9980

TABLE 3—Correlation coefficients between GC columns (NB = narrow bore and WB = wide bore).

FIG. 1—Correlation of the retention indices of drugs and other compounds of toxicological interest on narrow bore capillary and packed columns (r = 0.9966).

FIG. 2—Correlation of the retention indices of drugs and other compounds of toxicological interest on wide bore capillary and packed columns (r = 0.9952).

FIG. 3—Correlation of the retention indices of drugs and other compounds of toxicological interest on SGE wide bore and narrow bore capillary columns (r = 0.9994).

these compounds gave the outlying points on the correlation graphs in Figs. 1, 2, and 3. In addition, the elution orders of some pairs of closely eluting compounds (codeine, dihydrocodeine and amitriptyline, butriptyline) were reversed for packed and capillary columns. Decomposition of some drugs may also result in discrepancies between the observed RI and that recorded in a data base since experimental conditions may determine the degree of decomposition. This is illustrated by the analysis of psilocybin, when decomposition to psilocin can occur.

Compounds known to produce poor peak shapes on SE-30 packed columns did not chromatograph well on the capillary columns (nicotinic acid, acetylsalicylic acid, physostigmine, tolazoline, atropine, and warfarin), and several gave RI values which differed by more than ± 50 from the packed column data. The best peak shapes were obtained for some of these compounds on the DB1 wide bore capillary column. This may be attributable to the thicker film of stationary phase on this column (1.5μ m) since one of the claimed advantages of thick film columns is that residual "active sites" on the column wall are masked, thus reducing adsorption and tailing. During the period of the experimental evaluation of the wide bore columns, the DB1 column displayed less stationary phase bleed.

At present, there is not a data base available containing RI values of drugs generated solely on fused silica SE-30 bonded phase capillary columns which is as extensive as that generated on SE-30 packed columns and which contains interlaboratory data [2]. For the identification of unknown compounds eluting from capillary columns it would be very desirable to have access to such a data base containing RI values generated only on capillary columns since the present study shows that some discrepancies in RI values do occur between the two types of column. However, until such a data base is available, it is possible to use the packed column data for the preliminary identification of unknown compounds eluting from narrow bore and wide bore capillary columns providing that a wide enough search window is used. This generally presents few problems as unambiguous identification always requires confirmation by another technique (for example, mass spectrometry).

From this study, RI values of drugs determined on narrow bore capillary and wide bore capillary columns from two manufacturers were highly correlated indicating that a data base generated on narrow bore columns can be used for the identification of compounds eluting from wide bore columns or vice versa. Thus, if in the future, a data base, similar to that for packed columns, is prepared for capillary columns, then this should be applicable to both narrow bore and wide bore columns. The comparison of drug RI values on the two different manufacturers' columns gave differences of up to 30 RI units for the two columns, well within the accepted search window used with packed columns. The correlations obtained for wide bore capillary columns were particularly interesting since these columns are becoming popular as alternatives to packed columns and discussions concerning their application to toxicological analyses are beginning to appear in the literature [22, 23].

There has been much reported by other workers about the concentration dependence of retention behavior for capillary columns [10, 12, 21, 24-26], especially at high loading. Newton and Foery [12] considered the influence of injecting different amounts of drug which might arise from samples containing therapeutic and toxic levels and found that most compounds only shifted from 1 to 8 RI units. For the present study, all RI values were determined using drug concentrations that did not overload the column. In practice, in a toxicology laboratory, any concentration related effects can be overcome since an overloaded peak is recognizable from its altered peak shape (slow upward rise with a rapid fall to baseline). Such a sample should be subsequently diluted and reinjected to redetermine its RI value. For wide bore columns, which have a larger sample capacity than narrow bore columns, the problem of overloading is diminished [22].

Conclusion

The isothermal retention indices of 75 compounds of toxicological interest measured on SE-30 equivalent narrow bore thin film capillary columns, wide bore thick film capillary columns, and packed columns are shown to be highly correlated. Retention indices on wide bore columns from different manufacturers are also highly correlated. The results indicate that it is reasonable to use RI data measured on SE-30 packed columns for the provisional assignment of identity of peaks eluting from wide bore or narrow bore capillary columns which have an SE-30-type stationary phase. As always in toxicological analyses, alternative methods must be used to confirm identity.

References

- Ettre, L. S., "Open-Tubular Columns: Evolution, Present Status and Future," Analytical Chemistry, Vol. 57, 1985, pp. 1419-1438.
- [2] Ardrey, R. E., de Zeeuw, R. A., Finkle, B. S., Franke, J. P., Moffat, A. C., et al., Gas Chromatographic Retention Indices of Toxicologically Relevant Substances on SE-30 or OV-1, second edition, VCH Publishers, Weinheim, Deerfield Beach, 1985.
- [3] Moffat, A. C., "Use of SE-30 as a Stationary Phase for the Gas-Liquid Chromatography of Drugs," Journal of Chromatography, Vol. 113, 1975, pp. 69-95.
- [4] Ardrey, R. E. and Moffat, A. C., "Gas-Liquid Chromatographic Retention Indices of 1318 Substances of Toxicological Interest on SE-30 or OV-1 Stationary Phase," *Journal of Chromatogra*phy, Vol. 220, 1981, pp. 195-252.
- [5] Ramsey, J. D., Lee, T. D., Osselton, M. D., and Moffat, A. C., "Gas-Liquid Chromatographic Retention Indices of 296 Non-Drug Substances on SE-30 or OV-1 Likely to be Encountered in Toxicological Analyses," *Journal of Chromatography*, Vol. 184, 1980, pp. 185-206.
- [6] Peel, H. W. and Perrigo, B., "A Practical Gas Chromatographic Screening Procedure for Toxicological Analysis," Canadian Society of Forensic Science Journal, Vol. 9, 1976, pp. 69-74.
- [7] Perrigo, B. J. and Peel, H. W., "The Use of Retention Indices and Temperature-Programmed Gas Chromatography in Analytical Toxicology," *Journal of Chromatographic Science*, Vol. 19, 1981, pp. 219-226.
- [8] Schepers, P., Wijsbeek, J., Franke, J. P., and de Zeeuw, R. A., "Applicability of Capillary Gas Chromatography to Substance Identification in Toxicology by Means of Retention Indices," *Journal of Forensic Sciences*, Vol. 27, No. 1, Jan. 1982, pp. 49-60.
- [9] Anderson, W. H. and Stafford, D. T., "Applications of Capillary Gas Chromatography in Routine Toxicological Analyses," Journal of High Resolution Chromatography and Chromatography Communications, Vol. 6, 1983, pp. 247-254.

- [10] Perrigo, B. J., Ballantyne, D. J., and Peel, H. W., "Considerations in Developing a Data Base for Drugs on a DB1 Capillary Column," Canadian Society of Forensic Science Journal, Vol. 17, 1984, pp. 41-49.
- [11] Stafford, D. T., "Comparison of Retention Indices on Bonded and Coated Dimethyl Polysiloxane Capillary Columns," Crime Laboratory Digest, Vol. 12, 1985, pp. 60-63.
- [12] Newton, B. and Foery, R. F., "Retention Indices and Dual Capillary Gas Chromatography for Rapid Identification of Sedative Hypnotic Drugs in Emergency Toxicology," Journal of Analytical Toxicology, Vol. 8, 1984, pp. 129-134.
- [13] Perrigo, B. J., Peel, H. W., and Ballantyne, D. J., "Use of Dual-Column Fused-Silica Capillary Gas Chromatography in Combination with Detector Response Factors for Analytical Toxicology, Journal of Chromatography, Vol. 341, 1985, pp. 81-88. [14] D'Agostino, P. A. and Provost, L. R., "Gas Chromatographic Retention Indices of Chemical War-
- fare Agents and Simulants," Journal of Chromatography, Vol. 331, 1985, pp. 47-54.
 [15] Koves, E. M. and Wells, J., "An Evaluation of Fused Silica Capillary Columns for the Screening of
- Basic Drugs in Postmortem Blood: Qualitative and Quantitative Analysis," Journal of Forensic Sciences, Vol. 30, No. 3, July 1985, pp. 692-707.
- [16] Lora-Tamayo, C., Rams, M. A., and Chacon, J. M. R., "Gas Chromatographic Data for 187 Nitrogen- or Phosphorus-Containing Drugs and Metabolites of Toxicological Interest Analysed on Methyl Silicone Capillary Columns," Journal of Chromatography, Vol. 374, 1986, pp. 73-85.
- [17] Moffat, A. C., Stead, A. H., and Smalldon, K. W., "Optimum Use of Paper, Thin-Layer and Gas-Liquid Chromatography for the Identification of Basic Drugs. III. Gas-Liquid Chromatography,' Journal of Chromatography, Vol. 90, 1974, pp. 19-33.
- [18] Kovats, E., "Gas Chromatographic Characterisation of Organic Compounds," Helvetica Chimica Acta, Vol. 41, 1958, pp. 1915-1932.
- [19] Grob, K., Jr. and Neukom, H. P., "The Influence of the Syringe Needle on the Precision and Accuracy of Vaporizing GC Injections," Journal of High Resolution Chromatography and Chromatography Communications, Vol. 2, 1979, pp. 15-21.
- [20] Grob, K., Jr. and Rennhard, S., "Evaluation of Syringe Handling Techniques for Injections into Vaporizing GC Injectors," Journal of High Resolution Chromatography and Chromatography Communications, Vol. 3, 1980, pp. 627-633. [21] de Zeeuw, R. A., "Chromatography in Analytical Toxicology—State of the Art and Future Per-
- spectives," Journal of Pharmaceutical and Biomedical Analysis, Vol. 1, 1983, pp. 435-449.
- [22] Franke, J. P., de Zeeuw, R. A., and Wijsbeek, J., "Potentials of Wide-Bore Fused Silica Capillary Columns for Substance Identification by Means of Retention Indices," Journal of Analytical Toxicology, Vol. 10, 1986, pp. 132-134.
- [23] Bogusz, M., Bialka, J., Gierz, J., and Klys, M., "Use of Short, Wide-Bore Capillary Columns in
- GC Toxicological Screening," Journal of Analytical Toxicology, Vol. 10, 1986, pp. 135-138. [24] Plotczyk, L. L. and Larson, P., "Advances in Fused-Silica Column Technology for the Analysis of Underivatized Drugs," Journal of Chromatography, Vol. 257, 1983, pp. 211-226.
- [25] Bogusz, M., Wijsbeek, J., Franke, J. P., and de Zeeuw, R. A., "Applicability of Capillary Gas Chromatography to Systematic Toxicological Analysis: Occurrence of Concentration-Dependent Retention Behaviour," Journal of Analytical Toxicology, Vol. 7, 1983, pp. 188-192.
- [26] Bogusz, M., Wijsbeek, J., Franke, J. P., and de Zeeuw, R. A., "Concentration-Dependent Behaviour of Drugs in Capillary Gas Chromatography Using Splitless Injection," Journal of High Resolution Chromatography and Chromatography Communications, Vol. 6, 1983, pp. 40-42.

Address requests for reprints or additional information to Margaret Japp Drugs and Toxicology Division Central Research Establishment Home Office Forensic Science Service Aldermaston, Reading, Berkshire, RG7 4PN, England